The Economy of Workshop Mainipulation(原文阅读)

     著书立意乃赠花于人之举,然万卷书亦由人力而为,非尽善尽美处还盼见谅 !

                     —— 华辀远岑

1 2 3✔ 4 5

Chapter XX

Having thus far treated of such general principles and facts connected with practical mechanics as might properly precede, and be of use in, the study of actual manipulation in a workshop, we come next to casting, forging, and finishing, with other details that involve manual as well as mental skill, and to which the term "processes" will apply.

As these shop processes or operations are more or less connected, and run one into the other, it will be necessary at the beginning to give a short summary of them, stating the general object of each, that may serve to render the detailed remarks more intelligible to the reader as he comes to them in their consecutive order.

Designing, or generating the plans of machinery, may be considered the leading element in engineering manufactures or machine construction, that one to which all others are subordinate, both in order and importance, and is that branch to which engineering knowledge is especially directed. Designing should consist, first, in assuming certain results, and, secondly, in conceiving of mechanical agents to produce these results. It comprehends the geometry of movements, the disposition and arrangement of material, the endurance of wearing surfaces, adjustments, symmetry; in short, all the conditions of machine operation and machine construction. This subject will be again treated of at more length in another section.

Draughting, or drawing, as it is more commonly called, is a means by which mental conceptions are conveyed from one person to another; it is the language of mechanics, and takes the place of words, which are insufficient to convey mechanical ideas in an intelligible manner.

Drawings represent and explain the machinery to which they relate as the symbols in algebra represent quantities, and in a degree admit of the same modifications and experiments to which the machinery itself could be subjected if it were already constructed. Drawings are also an important aid in developing designs or conceptions. It is impossible to conceive of, and retain in the mind, all the parts of a complicated machine, and their relation to each other, without some aid to fix the various ideas as they arise, and keep them in sight for comparison; like compiling statistics, the footings must be kept at hand for reference, and to determine the relation that one thing may bear to another.

In the workshop, the objects of drawing are to communicate plans and dimensions to the workmen, and to enable a division of the labour, so that the several parts of a machine may be operated upon by different workmen at the same time—also to enable classification and estimates of cost to be made, and records kept.

Drawings are, in fact, the base of shop system, upon which depends not only the accuracy and uniformity of what is produced, but also, in a great degree, its cost. Complete drawings of whatever is made are now considered indispensable in the best regulated establishments; yet we are not so far removed from a time when most work was made without drawings, but what we may contrast the present system with that which existed but a few years ago, when to construct a new machine was a great undertaking, involving generally many experiments and mistakes.

Pattern-making relates to the construction of duplicate models for the moulded parts of machinery, and involves a knowledge of shrinkage and cooling strains, the manner of moulding and proper position of pieces, when cast, to ensure soundness in particular parts. As a branch of machine manufacture, pattern-making requires a large amount of special knowledge, and a high degree of skill; for in no other department is there so much that must be left to the discretion and judgment of workmen.

Pattern-makers have to thoroughly understand drawings, in order to reproduce them on the trestle boards with allowance for shrinkage, and to determine the cores; they must also understand moulding, casting, fitting, and finishing. Pattern-making as a branch of machine manufacture, should rank next to designing and drafting.

Founding and casting relate to forming parts of machinery by pouring melted metal into moulds, the force of gravity alone being sufficient to press or shape it into even complicated forms. As a process for shaping such metal as is not injured by the high degree of heat required in melting, moulding is the cheapest and most expeditious of all means, even for forms of regular outline, while the importance of moulding in producing irregular forms is such that without this process the whole system of machine construction would have to be changed. Founding operations are divided into two classes, known technically as green sand moulding, and loam or dry sand moulding; the first, when patterns or duplicates are used to form the moulds, and the second, when the moulds are built by hand without the aid of complete patterns. Founding involves a knowledge of mixing and melting metals such as are used in machine construction, the preparing and setting of cores for the internal displacement of the metal, cooling and shrinking strains, chills, and many other things that are more or less special, and can only be learned and understood from actual observation and practice.

Forging relates to shaping metal by compression or blows when it is in a heated and softened condition; as a process, it is an intermediate one between casting and what may be called the cold processes. Forging also relates to welding or joining pieces together by sudden heating that melts the surface only, and then by forcing the pieces together while in this softened or semi-fused state. Forging includes, in ordinary practice, the preparation of cutting tools, and tempering them to various degrees of hardness as the nature of the work for which they are intended may require; also the construction of furnaces for heating the material, and mechanical devices for handling it when hot, with the various operations for shaping, which, as in the case of casting, can only be fully understood by experience and observation.

Finishing and fitting relates to giving true and accurate dimensions to the parts of machinery that come in contact with each other and are joined together or move upon each other, and consists in cutting away the surplus material which has to be left in founding and forging because of the heated and expanded condition in which the material is treated in these last processes. In finishing, material is operated upon at its normal temperature, in which condition it can be handled, gauged, or measured, and will retain its shape after it is fitted. Finishing comprehends all operations of cutting and abrading, such as turning, boring, planing and grinding, also the handling of material; it is considered the leading department in shop manipulation, because it is the one where the work constructed is organised and brought together. The fitting shop is also that department to which drawings especially apply, and other preparatory operations are usually made subservient to the fitting processes.

Shop system may also be classed as a branch of engineering work; it relates to the classification of machines and their parts by symbols and numbers, to records of weight, the expense of cast, forged, and finished parts, and apportions the cost of finished machinery among the different departments. Shop system also includes the maintenance of standard dimensions, the classification and cost of labour, with other matters that partake both of a mechanical and a commercial nature.

In order to render what is said of shop processes more easily understood, it will be necessary to change the order in which they have been named. Designing, and many matters connected with the operation of machines, will be more easily learned and understood after having gone through with what may be called the constructive operations, such as involve manual skill.

(1.) Name the different departments of an engineering establishment.—(2.) What does the engineering establishment include?—(3.) What does the commercial department include?—(4.) The foundry department?—(5.) The forging department?—(6.) The fitting department?—(7.) What does the term shop system mean as generally employed?

Chapter XXI

Machine-drawing may in some respects be said to bear the same relation to mechanics that writing does to literature; persons may copy manuscript, or write from dictation, of what they do not understand; or a mechanical draughtsman may make drawings of a machine he does not understand; but neither such writing or drawing can have any value beyond that of ordinary labour. It is both necessary and expected that a draughtsman shall understand all the various processes of machine construction, and be familiar with the best examples that are furnished by modern practice.

Geometrical drawing is not an artistic art so much as it is a constructive mechanical one; displaying the parts of machinery on paper, is much the same in practice, and just the same in principle, as measuring and laying out work in the shop.

Artistic drawing is addressed to the senses, geometrical drawing is addressed to the understanding. Geometrical drawing may, however, include artistic skill not in the way of ornamentation, but to convey an impression of neatness and completeness, that has by common custom been assumed among engineers, and which conveys to the mind an idea of competent construction in the drawing itself, as well as of the machinery which is represented. Artistic effect, so far as admissible in mechanical drawing, is easy to learn, and should be understood, yet through a desire to make pictures, a beginner is often led to neglect that which is more important in the way of accuracy and arrangement.

It is easy to learn "how" to draw, but it is far from easy to learn "what" to draw. Let this be kept in mind, not in the way of disparaging effort in learning "how" to draw, for this must come first, but in order that the objects and true nature of the work will be understood.

The engineering apprentice, as a rule, has a desire to make drawings as soon as he begins his studies or his work, and there is not the least objection to his doing so; in fact, there is a great deal gained by illustrating movements and the details of machinery at the same time of studying the principles. Drawings if made should always be finished, carefully inked in, and memoranda made on the margin of the sheets, with the date and the conditions under which the drawings were made. The sheets should be of uniform size, not too large for a portfolio, and carefully preserved, no matter how imperfect they may be. An apprentice who will preserve his first drawings in this manner will some day find himself in possession of a souvenir that no consideration would cause him to part with.

For implements procure two drawing-boards, forty-two inches long and thirty inches wide, to receive double elephant paper; have the boards plain without cleets, or ingenious devices for fastening the paper; they should be made from thoroughly seasoned lumber, at least one and one-fourth inches thick; if thinner they will not be heavy enough to resist the thrust of the T squares.

It is better to have two boards, so that one may be used for sketching and drawing details, which, if done on the same sheet with elevations, dirties the paper, and is apt to lower the standard of the finished drawing by what may be called bad association.

Details and sketches, when made on a separate sheet, should be to a larger scale than elevations. By changing from one scale to another the mind is schooled in proportion, and the conception of sizes and dimensions is more apt to follow the finished work to which the drawings relate.

In working to regular scales, such as one-half, one-eighth, or one-sixteenth size, a good plan is to use a common rule, instead of a graduated scale. There is nothing more convenient for a mechanical draughtsman than to be able to readily resolve dimensions into various scales, and the use of a common rule for fractional scales trains the mind, so that computations come naturally, and after a time almost without effort. A plain T square, with a parallel blade fastened on the side of the head, but not imbedded into it, is the best; in this way set squares can pass over the head of a T square in working at the edges of the drawing. It is strange that a draughting square should ever have been made in any other manner than this, and still more strange, that people will use squares that do not allow the set squares to pass over the heads and come near to the edge of the board.

A bevel square is often convenient, but should be an independent one; a T square that has a movable blade is not suitable for general use. Combinations in draughting instruments, no matter what their character, should be avoided; such combinations, like those in machinery, are generally mistakes, and their effect the reverse of what is intended.

For set squares, or triangles, as they are sometimes called, no material is so good as ebonite; such squares are hard, smooth, impervious to moisture, and contrast with the paper in colour; besides they wear longer than those made of wood. For instruments, it is best to avoid everything of an elaborate or fancy kind; such sets are for amateurs, not engineers. It is best to procure only such instruments at first as are really required, of the best quality, and then to add others as necessity may demand; in this way, experience will often suggest modifications of size or arrangement that will add to the convenience of a set.

One pair each of three and one-half inch and five inch compasses, two ruling pens, two pairs of spring dividers, one for pens and one for pencils, a triangular boxwood scale, a common rule, and a hard pencil, are the essential instruments for machine-drawing. At the beginning, when "scratching out" will probably form an item in the work, it is best to use Whatman's paper, or the best roll paper, which, of the best manufacture, is quite as good as any other for drawings that are not water-shaded.

In mounting sheets that are likely to be removed and replaced, for the purpose of modification, as working drawings generally are, they can be fastened very well by small copper tacks driven along the edges at intervals of two inches or less. The paper can be very slightly dampened before fastening in this manner, and if the operation is carefully performed the paper will be quite as smooth and convenient to work upon as though it were pasted down; the tacks can be driven down so as to be flush with, or below the surface of, the paper, and will offer no obstruction to squares.

If a drawing is to be elaborate, or to remain long upon a board, the paper should be pasted down. To do this, first prepare thick mucilage, or what is better, glue, and have it ready at hand, with some slips of absorbent paper an inch or so wide. Dampen the sheet on both sides with a sponge, and then apply the mucilage along the edge, for a width of one-fourth or three-eighths of an inch. It is a matter of some difficulty to place a sheet upon a board; but if the board is set on its edge, the paper can be applied without assistance. Then, by placing the strips of paper along the edge, and rubbing over them with some smooth hard instrument, the edges of the sheet can be pasted firmly to the board, the paper slips taking up a part of the moisture from the edges, which are longest in drying. If left in this condition, the centre will dry first, and the paper be pulled loose at the edges by contraction before the paste has time to dry. It is therefore necessary to pass over the centre of the sheet with a wet sponge at intervals to keep the paper slightly damp until the edges adhere firmly, when it can be left to dry, and will be tight and smooth. In this operation much will be learned by practice, and a beginner should not be discouraged by a few failures. One of the most common difficulties in mounting sheets is in not having the gum or glue thick enough; when thin, it will be absorbed by the wood or the paper, or is too long in drying; it should be as thick as it can be applied with a brush, and made from clean Arabic gum, tragacanth, or fine glue.

Thumb-tacks are of but little use in mechanical drawing except for the most temporary purposes, and may very well be dispensed with altogether; they injure the draughting-boards, obstruct the squares, and disfigure the sheets.

Pencilling is the first and the most important operation in draughting; more skill is required to produce neat pencil-work than to ink in the lines after the pencilling is done.

A beginner, unless he exercises great care in the pencil-work of a drawing, will have the disappointment to find the paper soon becoming dirty from plumbago, and the pencil-lines crossing each other everywhere, so as to give the whole a slovenly appearance. He will also, unless he understands the nature of the operations in which he is engaged, make the mistake of regarding the pencil-work as an unimportant part, instead of constituting, as it does, the main drawing, and thereby neglect that accuracy which alone can make either a good-looking or a valuable one.

Pencil-work is indeed the main operation, the inking being merely to give distinctness and permanency to the lines. The main thing in pencilling is accuracy of dimensions and stopping the lines where they should terminate without crossing others. The best pencils only are suitable for draughting; if the plumbago is not of the best quality, the points require to be continually sharpened, and the pencil is worn away at a rate that more than makes up the difference in cost between the finer and cheaper grades of pencils, to say nothing of the effect upon a drawing.

It is common to use a flat point for draughting pencils, but a round one will often be found quite as good if the pencils are fine, and some convenience is gained by a round point for free-hand use in making rounds and fillets. A Faber pencil, that has detachable points which can be set out as they are worn away, is convenient for draughting.

For compasses, the lead points should be cylindrical, and fit into a metal sheath without paper packing or other contrivance to hold them; and if a draughtsman has instruments not arranged in this manner, he should have them changed at once, both for convenience and economy.

Ink used in drawing should always be the best that can be procured; without good ink a draughtsman is continually annoyed by an imperfect working of pens, and the washing of the lines if there is shading to be done. The quality of ink can only be determined by experiment; the perfume that it contains, or tinfoil wrappers and Chinese labels, are no indication of quality; not even the price, unless it be with some first-class house. To prepare ink, I can recommend no better plan of learning than to ask some one who understands the matter. It is better to waste a little time in preparing it slowly than to be at a continual trouble with pens, which will occur if the ink is ground too rapidly or on a rough surface. To test ink, a few lines can be drawn on the margin of a sheet, noting the shade, how the ink flows from the pen, and whether the lines are sharp; after the lines have dried, cross them with a wet brush; if they wash readily, the ink is too soft; if they resist the water for a time, and then wash tardily, the ink is good. It cannot be expected that inks soluble in water can permanently resist its action after drying; in fact, it is not desirable that drawing inks should do so, for in shading, outlines should be blended into the tints where the latter are deep, and this can only be effected by washing.

Pens will generally fill by capillary attraction; if not, they should be made wet by being dipped into water; they should not be put into the mouth to wet them, as there is danger of poison from some kinds of ink, and the habit is not a neat one.

In using ruling pens, they should be held nearly vertical, leaning just enough to prevent them from catching on the paper. Beginners have a tendency to hold pens at a low angle, and drag them on their side, but this will not produce clean sharp lines, nor allow the lines to be made near enough to the edges of square blades or set squares.

In regard to the use of the T square and set squares, no useful rules can be given except to observe others, and experiment until convenient customs are attained. A beginner should be careful of adopting unusual plans, and above all things, of making important discoveries as to new plans of using instruments, assuming that common practice is all wrong, and that it is left for him to develop the true and proper way of drawing. This is a kind of discovery which is very apt to intrude itself at the beginning of an apprentice's course in many matters besides drawing, and often leads him to do and say many things which he will afterwards wish to recall.

It is generally a safe rule to assume that any custom long and uniformly followed by intelligent people is right; and, in the absence of that experimental knowledge which alone enables one to judge, it is safe to receive such customs, at least for a time, as being correct.

Without any wish to discourage the ambition of an apprentice to invent, which always inspires him to laudable exertion, it is nevertheless best to caution him against innovations. The estimate formed of our abilities is very apt to be inversely as our experience, and old engineers are not nearly so confident in their deductions and plans as beginners are.

A drawing being inked in, the next things are tints, dimension, and centre lines. The centre lines should be in red ink, and pass through all points of the drawing that have an axial centre, or where the work is similar and balanced on each side of the line. This rule is a little obscure, but will be best understood if studied in connection with a drawing, and perhaps as well remembered without further explanation.

Dimension lines should be in blue, but may be in red. Where to put them is a great point in draughting. To know where dimensions are required involves a knowledge of fitting and pattern-making, and cannot well be explained; it must be learned in practice. The lines should be fine and clear, leaving a space in their centre for figures when there is room. The distribution of centre lines and dimensions over a drawing must be carefully studied, for the double purpose of giving it a good appearance and to avoid confusion. Figures should be made like printed numerals; they are much better understood by the workman, look more artistic, and when once learned require but little if any more time than written figures. If the scale employed is feet and inches, dimensions to three feet should be in inches, and above this in feet and inches; this corresponds to shop custom, and is more comprehensive to the workman, however wrong it may be according to other standards.

In sketches and drawings made for practice, such as are not intended for the shop, it is suggested that metrical scales be employed; it will not interfere with feet and inches, and will prepare the mind for the introduction of this system of lineal measurement, which may in time be adopted in England and America, as it has been in many other countries.

In shading drawings, be careful not to use too deep tints, and to put the shades in the right place. Many will contend, and not without good reasons, that working drawings require no shading; yet it will do no harm to learn how and where they can be shaded: it is better to omit the shading from choice than from necessity. Sections must, of course, be shaded—not with lines, although I fear to attack so old a custom, yet it is certainly a tedious and useless one: sections with light ink shading of different colours, to indicate the kind of material, are easier to make, and look much better. By the judicious arrangement of a drawing, a large share of it may be in sections, which in almost every case are the best views to work by. The proper colouring of sections gives a good appearance to a drawing, and conveys an idea of an organised machine, or, to use the shop term, "stands out from the paper." In shading sections, leave a margin of white between the tints and the lines on the upper and left-hand sides of the section: this breaks the connection or sameness, and the effect is striking; it separates the parts, and adds greatly to the clearness and general appearance of a drawing.

Cylindrical parts in the plane of sections, such as shafts and bolts, should be drawn full, and have a 'round shade,' which relieves the flat appearance—a point to be avoided as much as possible in sectional views.

Conventional custom has assigned blue as a tint for wrought iron, neutral or pale pink for cast iron, and purple for steel. Wood is generally distinguished by "graining," which is easily done, and looks well.

The title of a drawing is a feature that has much to do with its appearance, and the impression conveyed to the mind of an observer. While it can add nothing to the real value of a drawing, it is so easy to make plain letters, that the apprentice is urged to learn this as soon as he begins to draw; not to make fancy letters, nor indeed any kind except plain block letters, which can be rapidly laid out and finished, and consequently employed to a greater extent. By drawing six parallel lines, making five spaces, and then crossing them with equidistant lines, the points and angles in block letters are determined; after a little practice, it becomes the work of but a few minutes to put down a title or other matter on a drawing so that it can be seen and read at a glance in searching for sheets or details.

In the manufacture of machines, there are usually so many sizes and modifications, that drawings should assist and determine in a large degree the completeness of classification and record. Taking the manufacture of machine tools, for example: we cannot well say, each time they are to be spoken of, a thirty-six inch lathe without screw and gearing, a thirty-two inch lathe with screw and gearing, a forty-inch lathe triple geared or double geared, with a twenty or thirty foot frame, and so on. To avoid this it is necessary to assume symbols for machines of different classes, consisting generally of the letters of the alphabet, qualified by a single number as an exponent to designate capacity or different modifications. Assuming, in the case of engine lathes, A to be the symbol for lathes of all sizes, then those of different capacity and modification can be represented in the drawings and records as A1, A2, A3, A4, and so on, requiring but two characters to indicate a lathe of any kind. These symbols should be marked in large plain letters on the left-hand lower corner of sheets, so that the manager, workman, or any one else, can see at a glance what the drawings relate to. This symbol should run through the time-book, cost account, sales record, and be the technical name for machines to which it applies; in this way machines will always be spoken of in the works by the name of their symbol.

In making up the time charged to different machines during their construction, a good plan is to supply each workman with a slate and pencil, on which he can enter his time as so many hours or fractions of hours charged to the respective symbols. Instead of interfering with his time, this will increase a workman's interest in what he is doing, and naturally lead to a desire to diminish the time charged to the various symbols. This system leads to emulation among workmen where any operation is repeated by different persons, and creates an interest in classification which workmen will willingly assist in.

When the dimensions and symbols are added to a drawing, the next thing is pattern or catalogue numbers. These should be marked in prominent, plain figures on each piece of casting, either in red or other colour that will contrast with the general face of the drawing. These numbers, to avoid the use of symbols in connection with them, must include consecutively all patterns employed in the business, and can extend to thousands without inconvenience.

A book containing the pattern record should be kept, in which these catalogue numbers are set down, with a short description to identify the different parts to which the numbers belong, so that all the various details of any machine can at any time be referred to. Besides this description, there should be opposite the catalogue of pattern numbers, ruled spaces, in which to enter the weight of castings, the cost of the pattern, and also the amount of turned, planed, or bored surface on each piece when it is finished, or the time required in fitting, which is the same thing. In this book the assembled parts of each machine should be set down in a separate list, so that orders for castings can be made from the list without other references. This system is the best one known to the writer, and is in substance a plan now adopted in many of the best engineering establishments. A complete system in all things pertaining to drawings and classifications should be rigidly adhered to; any plan is better than none, and the schooling of the mind to be had in the observance of systematic rules is a matter not to be neglected. New plans for promoting system may at any time arise, but such plans cannot be at any time understood and adopted except by those who have cultivated a taste for order and regularity.

In regard to shaded elevations, it may be said that photography has superseded them for the purpose of illustrating completed machines, and but few establishments care to incur the expense of ink-shaded elevations. Shaded elevations cannot be made with various degrees of care, and in a longer or shorter time; there is but one standard for them, and that is that such drawings should be made with great care and skill. Imperfect shaded elevations, although they may surprise and please the unskilled, are execrable in the eyes of a draughtsman or an engineer; and as the making of shaded elevations can be of but little assistance to an apprentice draughtsman, it is better to save the time that must be spent in order to make such drawings, and apply the same study and time to other matters of greater importance.

It is not assumed that shaded elevations should not be made, nor that ink shading should not be learned, but it is thought best to point out the greater importance of other kinds of drawing, too often neglected to gratify a taste for picture-making, which has but little to do with practical mechanics.

Isometrical perspective is often useful in drawing, especially in wood structures, when the material is of rectangular section, and disposed at right angles, as in machine frames. One isometrical view, which can be made nearly as quickly as a true elevation, will show all the parts, and may be figured for dimensions the same as plane views. True perspective, although rarely necessary in mechanical drawing, may be studied with advantage in connection with geometry; it will often lead to the explanation of problems in isometric drawing, and will also assist in free-hand lines that have sometimes to be made to show parts of machinery oblique to the regular planes. Thus far the remarks on draughting have been confined to manipulation mainly. As a branch of engineering work, draughting must depend mainly on special knowledge, and is not capable of being learned or practised upon general principles or rules. It is therefore impossible to give a learner much aid by searching after principles to guide him; the few propositions that follow comprehend nearly all that may be explained in words.

1. Geometrical drawings consist in plans, elevations, and sections; plans being views on the top of the object in a horizontal plane; elevations, views on the sides of the object in vertical planes; and sections, views taken on bisecting planes, at any angle through an object.

2. Drawings in true elevation or in section are based upon flat planes, and give dimensions parallel to the planes in which the views are taken.

3. Two elevations taken at right angles to each other, fix all points, and give all dimensions of parts that have their axis parallel to the planes on which the views are taken; but when a machine is complex, or when several parts lie in the same plane, three and sometimes four views are required to display all the parts in a comprehensive manner.

4. Mechanical drawings should be made with reference to all the processes that are required in the construction of the work, and the drawings should be responsible, not only for dimensions, but for unnecessary expense in fitting, forging, pattern-making, moulding, and so on.

5. Every part laid down has something to govern it that may be termed a "base"—some condition of function or position which, if understood, will suggest size, shape, and relation to other parts. By searching after a base for each and every part and detail, the draughtsman proceeds upon a regular system, continually maintaining a test of what is done. Every wheel, shaft, screw or piece of framing should be made with a clear view of the functions it has to fill, and there are, as before said, always reasons why such parts should be of a certain size, have such a speed of movement, or a certain amount of bearing surface, and so on. These reasons or conditions may be classed as expedient, important, or essential, and must be estimated accordingly. As claimed at the beginning, the designs of machines can only in a limited degree be determined by mathematical data. Leaving out all considerations of machine operation with which books have scarcely attempted to deal, we have only to refer to the element of strains to verify the general truth of the proposition.

Examining machines made by the best designers, it will be found that their dimensions bear but little if any reference to calculated strains, especially in machines involving rapid motion. Accidents destroy constants, and a draughtsman or designer who does not combine special and experimental knowledge with what he may learn from general sources, will find his services to be of but little value in actual practice.

I now come to note a matter in connection with draughting to which the attention of learners is earnestly called, and which, if neglected, all else will be useless. I allude to indigestion, and its resultant evils. All sedentary pursuits more or less give rise to this trouble, but none of them so much as draughting. Every condition to promote this derangement exists. When the muscles are at rest, circulation is slow, the mind is intensely occupied, robbing the stomach of its blood and vitality, and, worse than all, the mechanical action of the stomach is usually arrested by leaning over the edge of a board. It is regretted that no good rule can be given to avoid this danger. One who understands the evil may in a degree avert it by applying some of the logic which has been recommended in the study of mechanics. If anything tends to induce indigestion, its opposite tends the other way, and may arrest it; if stooping over a board interferes with the action of the digestive organs, leaning back does the opposite; it is therefore best to have a desk as high as possible, stand when at work, and cultivate a constant habit of straightening up and throwing the shoulders back, and if possible, take brief intervals of vigorous exercise. Like rating the horse-power of a steam-engine, by multiplying the force into the velocity, the capacity of a man can be estimated by multiplying his mental acquirements into his vitality.

Physical strength, bone and muscle, must be elements in successful engineering experience; and if these things are not acquired at the same time with a mechanical education, it will be found, when ready to enter upon a course of practice, that an important element, the "propelling power," has been omitted.

(1.) What is the difference between geometric and artistic drawing?—(2.) What is the most important operation in making a good drawing?—(3.) Into what three classes can working drawings be divided?—(4.) Explain the difference between elevations and plans.—(5.) To what extent in general practice is the proportion of parts and their arrangement in machines determined mathematically?

Chapter XXII

Patterns and castings are so intimately connected that it would be difficult to treat of them separately without continually confounding them together; it is therefore proposed to speak of pattern-making and moulding under one head.

Every operation in a pattern-shop has reference to some operation in the foundry, and patterns considered separately from moulding operations would be incomprehensible to any but the skilled. Next to designing and draughting, pattern-making is the most intellectual of what may be termed engineering processes—the department that must include an exercise of the greatest amount of personal judgment on the part of the workman, and at the same time demands a high grade of hand skill.

For other kinds of work there are drawings furnished, and the plans are dictated by the engineering department of machinery-building establishments, but pattern-makers make their own plans for constructing their work, and have even to reproduce the drawings of the fitting-shop to work from. Nearly everything pertaining to patterns is left to be decided by the pattern-maker, who, from the same drawings, and through the exercise of his judgment alone, may make patterns that are durable and expensive, or temporary and cheap, as the probable extent of their use may determine.

The expense of patterns should be divided among and charged to the machines for which the patterns are employed, but there can be no constant rules for assessing or dividing this cost. A pattern may be employed but once, or it may be used for years; it is continually liable to be superseded by changes and improvements that cannot be predicted beforehand; and in preparing patterns, the question continually arises of how much ought to be expended on them—a matter that should be determined between the engineer and the pattern-maker, but is generally left to the pattern-maker alone, for the reason that but few mechanical engineers understand pattern-making so well as to dictate plans of construction.

To point out some of the leading points or conditions to be taken into account in pattern-making, and which must be understood in order to manage this department, I will refer to them in consecutive order.

First.—Durability, plans of construction and cost, which all amount to the same thing. To determine this point, there is to be considered the amount of use that the patterns are likely to serve, whether they are for standard or special machines, and the quality of the castings so far as affected by the patterns. A first-class pattern, framed to withstand moisture and rapping, may cost twice as much as another that has the same outline, yet the cheaper pattern may answer almost as well to form a few moulds as an expensive one.

Second.—The manner of moulding and its expense, so far as determined by the patterns, which may be parted so as to be 'rammed up' on fallow boards or a level floor, or the patterns may be solid, and have to be bedded, as it is termed; pieces on the top may be made loose, or fastened on so as to 'cope off;' patterns may be well finished so as to draw clean, or rough so that a mould may require a great deal of time to dress up after a pattern is removed.

Third.—The soundness of such parts as are to be planed, bored, and turned in finishing; this is also a matter that is determined mainly by how the patterns are arranged, by which is the top and which the bottom or drag side, the manner of drawing, and provisions for avoiding dirt and slag.

Fourth.—Cores, where used, how vented, how supported in the mould, and I will add how made, because cores that are of an irregular form are often more expensive than external moulds, including the patterns. The expense of patterns is often greatly reduced, but is sometimes increased, by the use of cores, which may be employed to cheapen patterns, add to their durability, or to ensure sound castings.

Fifth.—Shrinkage; the allowance that has to be made for the contraction of castings in cooling, in other words, the difference between the size of a pattern and the size of the casting. This is a simple matter apparently, which may be provided for in allowing a certain amount of shrinkage in all directions, but when the inequalities of shrinkage both as to time and degree are taken into account, the allowance to be made becomes a problem of no little complication.

Sixth.—Inherent, or cooling strains, that may either spring and warp castings, or weaken them by maintained tension in certain parts—a condition that often requires a disposition of the metal quite different from what working strains demand.

Seventh.—Draught, the bevel or inclination on the sides of patterns to allow them to be withdrawn from the moulds without dragging or breaking the sand.

Eighth.—Rapping plates, draw plates, and lifting irons for drawing the patterns out of the moulds; fallow and match boards, with other details that are peculiar to patterns, and have no counterparts, neither in names nor uses, outside the foundry.

This makes a statement in brief of what comprehends a knowledge of pattern-making, and what must be understood not only by pattern-makers, but also by mechanical engineers who undertake to design machinery or manage its construction successfully.

As to the manner of cutting out or planing up the lumber for patterns, and the manner of framing them together, it is useless to devote space to the subject here; one hour's practical observation in a pattern-shop, and another hour spent in examining different kinds of patterns, is worth more to the apprentice than a whole volume written to explain how these last-named operations are performed. A pattern, unless finished with paint or opaque varnish, will show the manner in which the wood is disposed in framing the parts together.

I will now proceed to review these conditions or principles in pattern-making and casting in a more detailed way, furnishing as far as possible reasons for different modes of constructing patterns, and the various plans of moulding and casting.

In regard to the character or quality of wood patterns, they can be made, as already stated, at greater or less expense, and if necessary, capable of almost any degree of endurance. The writer has examined patterns which had been used more than two hundred times, and were apparently good for an equal amount of use. Such patterns are expensive in their first cost, but are the cheapest in the end, if they are to be employed for a large number of castings. Patterns for special pieces, or such as are to be used for a few times only, do not require to be strong nor expensive, yet with patterns, as with everything else pertaining to machinery, the safest plan is to err on the side of strength.

For pulleys, gear wheels, or other standard parts of machinery which are not likely to be modified or changed, iron patterns are preferable; patterns for gear wheels and pulleys, when made of wood, aside from their liability to spring and warp, cannot be made sufficiently strong to withstand foundry use; besides, the greatest accuracy that can be attained, even by metal patterns, is far from producing true castings, especially for tooth wheels. The more perfect patterns are, the less rapping is required in drawing them; and the less rapping done, the more perfect castings will be.

The most perfect castings for gear wheels and pulleys and other pieces which can be so moulded, are made by drawing the patterns through templates without rapping. These templates are simply plates of metal perforated so that the pattern can be forced through them by screws or levers, leaving the sand intact. Such templates are expensive to begin with, because of the accurate fitting that is required, especially around the teeth of wheels, and the mechanism that is required in drawing the patterns, but when a large number of pieces are to be made from one pattern, such as gear wheels and pulleys, the saving of labour will soon pay for the templates and machinery required, to say nothing of the saving of metal, which often amounts to ten per cent., and the increased value of the castings because of their accuracy.

Mr Ransome of Ipswich, England, where this system of template moulding originated, has invented a process of fitting templates for gear wheels and other kinds of casting by pouring melted white metal around to mould the fit instead of cutting it through the templates; this effects a great saving in expense, and answers in many cases quite as well as the old plan.

The expense of forming pattern-moulds may be considered as divided between the foundry and pattern-shop. What a pattern-maker saves a moulder may lose, and what a pattern-maker spends a moulder may save; in other words, there is a point beyond which saving expense in patterns is balanced by extra labour and waste in moulding—a fact that is not generally realised because of inaccurate records of both pattern and foundry work. What is lost or saved by judicious or careless management in the matter of patterns and moulding can only be known to those who are well skilled in both moulding and pattern-making. A moulder may cut all the fillets in a mould with a trowel; he may stop off, fill up, and print in, to save pattern-work, but it is only expedient to do so when it costs very much less than to prepare proper patterns, because patching and cutting in moulds seldom improves them.

The reader may notice how everything pertaining to patterns and moulding resolves itself into a matter of judgment on the part of workmen, and how difficult it would be to apply general rules.

The arrangement of patterns with reference to having certain parts of castings solid and clean is an important matter, yet one that is comparatively easy to understand. Supposing the iron in a mould to be in a melted state, and to contain, as it always must, loose sand and 'scruff,' and that the weight of the dirt is to melted iron as the weight of cork is to water, it is easy to see where this dirt would lodge, and where it would be found in the castings. The top of a mould or cope, as it is called, contains the dirt, while the bottom or drag side is generally clean and sound: the rule is to arrange patterns so that the surfaces to be finished will come on the bottom or drag side.

Expedients to avoid dirt in such castings as are to be finished all over or on two sides are various. Careful moulding to avoid loose sand and washing is the first requisite; sinking heads, that rise above the moulds, are commonly employed when castings are of a form which allows the dirt to collect at one point. Moulds for sinking heads are formed by moulders as a rule, but are sometimes provided for by the patterns.

The quality of castings is governed by a great many things besides what have been named, such as the manner of gating or flowing the metal into the moulds, the temperature and quality of the iron, the temperature and character of the mould—things which any skilled foundryman will take pleasure in explaining in answer to courteous and proper questions.

Cores are employed mainly for what may be termed the displacement of metal in moulds. There is no clear line of distinction between cores and moulds, as founding is now conducted; cores may be of green sand, and made to surround the exterior of a piece, as well as to make perforations or to form recesses within it. The term 'core,' in its technical sense, means dried moulds, as distinguished from green sand. Wheels or other castings are said to be cast in cores when the moulds are made in pieces and dried. Supporting and venting cores, and their expansion, are conditions to which especial attention is called. When a core is surrounded with hot metal, it gives off, because of moisture and the burning of the 'wash,' a large amount of gas which must have free means of escape. In the arrangement of cores, therefore, attention must be had to some means of venting, which is generally attained by allowing them to project through the sides of the mould and communicate with the air outside.

An apprentice may get a clear idea of this venting process by inspecting tubular core barrels, such as are employed in moulding pipes or hollow columns, or by examining ordinary cores about a foundry. Provision of some kind to 'carry off the vent,' as it is termed by moulders, will be found in every case. The venting of moulds is even more important than venting cores, because core vents only carry off gas generated within the core itself, while the gas from its exterior surface, and from the whole mould, has to find means of escaping rapidly from the flasks when the hot metal enters.

A learner will no doubt wonder why sand is used for moulding, instead of some more adhesive material like clay. If he is not too fastidious for the experiment, and will apply a lump of damp moulding sand to his mouth and blow his breath through the mass, the query will be solved. If it were not for the porous nature of sand-moulds they would be blown to pieces as soon as the hot metal entered them; not only because of the mechanical expansion of the gas, but often from explosion by combustion. Gas jets from moulds, as may be seen at any time when castings are poured, will take fire and burn the same as illuminating gas.

If it were not for securing vent for gas, moulds could be made from plastic material so as to produce fine castings with clear sharp outlines.

The means of supporting cores must be devised, or at least understood, by pattern-makers; these supports consist of 'prints' and 'anchors.' Prints are extensions of the cores, which project through the casting and extend into the sides of the mould, to be held by the sand or by the flask. The prints of cores have duplicates on the patterns, called core prints, which are, or should be, of a different colour from the patterns, so as to distinguish one from the other. The amount of surface required to support cores is dependent upon their weight, or rather upon their cubic contents, because the weight of a core is but a trifling matter compared to its floating force when surrounded by melted metal. An apprentice in studying devices for supporting cores must remember that the main force required is to hold them down, and not to bear their weight. The floating force of a core is as the difference between its weight and that of a solid of metal of the same size—a matter moulders often forget to consider. It is often impossible, from the nature of castings, to have prints large enough to support the cores, and it is then effected by anchors, pieces of iron that stand like braces between the cores and the flasks or pieces of iron imbedded in the sand to receive the strain of the anchors.

In constructing patterns where it is optional whether to employ cores or not, and in preparing drawings for castings which may have either a ribbed or a cored section, it is nearly always best to employ cores. The usual estimate of the difference between the cost of moulding rib and cored sections, as well as of skeleton and cored patterns, is wrong. The expense of cores is often balanced by the advantage of having an 'open mould,' that is accessible for repairs or facing, and by the greater durability and convenience of the solid patterns. Taking, for example, a column, or box frame for machinery, that might be made either with a rib or a cored section, it would at first thought seem that patterns for a cored casting would cost much more by reason of the core-boxes; but it must be remembered that in most patterns labour is the principal expense, and what is lost in the extra lumber required for a core-box or in making a solid pattern is in many cases more than represented in the greater amount of labour required to construct a rib pattern.

Cores expand when heated, and require an allowance in their dimensions the reverse from patterns; this is especially the case when the cores are made upon iron frames. For cylindrical cores less than six inches diameter, or less than two feet long, expansion need not be taken into account by pattern-makers, but for large cores careful calculation is required. The expansion of cores is as the amount of heat imparted to them, and the amount of heat taken up is dependent upon the quantity of metal that may surround the core and its conducting power.

Shrinkage, or the contraction of castings in cooling, is provided for by adding from one-tenth to one-eighth of an inch to each foot in the dimensions of patterns. This is a simple matter, and is accomplished by employing a shrink rule in laying down pattern-drawings from the figured dimensions of the finished work; such rules are about one-hundredth part longer than the standard scale.

This matter of shrinkage is indeed the only condition in pattern-making which is governed by anything near a constant rule, and even shrinkage requires sometimes to be varied to suit special cases. For small patterns whose dimensions do not exceed one foot in any direction, rapping will generally make up for shrinkage, and no allowance is required in the patterns, but pattern-makers are so partial to the rule of shrinkage, as the only constant one in their work, that they are averse to admitting exceptions, and usually keep to the shrink rule for all pieces, whether large or small.

Inherent or cooling strains in castings is much more intricate than shrinkage: it is, in fact, one of the most uncertain and obscure matters that pattern-makers and moulders have to contend with. Inherent strains may weaken castings, or cause them to break while cooling, or sometimes even after they are finished; and in many kinds of works such strains must be carefully guarded against, both in the preparation of designs and the arrangement of patterns, especially for wheels and pulleys with spokes, and for struts or braces with both ends fixed. The main difficulty resulting from cooling strains, however, is that of castings being warped and sprung; this difficulty is continually present in the foundry and machine-shop, and there is perhaps no problem in the whole range of mechanical manipulation of which there exists more diversity of opinion and practice than of means to prevent the springing of castings. This being the case, an apprentice can hardly hope for much information here. There is no doubt of springing and strains in castings being the result of constant causes that might be fully understood if it were not for the ever-changing conditions which exist in casting, both as to the form of pieces, the temperature and quality of metal, mode of cooling, and so on.

Castings are of course sprung by the action of unequal strains, caused by one part cooling or 'setting' sooner than another. That far all is clear, but the next step takes us into the dark. What are the various conditions which induce irregular cooling, and how is it to be avoided?

Irregularity of cooling may be the result of unequal conducting power in different parts of a mould or cores, or it may be from the varying dimensions of the castings, which contain heat as their thickness, and give it off in the same ratio. As a rule, the drag or bottom side of a casting cools first, especially if a mould rests on the ground, and there is not much sand between the castings and the earth; this is a common cause of unequal cooling, especially in large flat pieces. Air being a bad conductor of heat, and the sand usually thin on the cope or top side, the result is that the top of moulds remain quite hot, while at the bottom the earth, being a good conductor, carries off the heat and cools that side first, so that the iron 'sets' first on the bottom, afterwards cooling and contracting on the top, so that castings are warped and left with inherent strains.

These are but a few of many influences which tend to irregular cooling, and are described with a view of giving a clue from which other causes may be traced out. The want of uniformity in sections which tends to irregular cooling can often be avoided without much loss by a disposition of the metal with reference to cooling strains. This, so far as the extra metal required to give uniformity to or to balance the different sides of a casting, is a waste which engineers are sometimes loth to consent to, and often neglect in designs for moulded parts; yet, as before said, the difficulty of irregular cooling can in a great degree be counteracted by a proper distribution of the metal, without wasting, if the matter is properly understood. No one is prepared to make designs for castings who has not studied the subject of cooling strains as thoroughly as possible, from practical examples as well as by theoretical deductions.

Draught, or the taper required to allow patterns to be drawn readily, is another of those indefinite conditions in pattern-making that must be constantly decided by judgment and experience. It is not uncommon to find rules for the draught of patterns laid down in books, but it would be difficult to find such rules applied. The draught may be one-sixteenth of an inch to each foot of depth, or it may be one inch to a foot of depth, or there may be no draught whatever. Any rule, considered aside from specified conditions, will only confuse a learner. The only plan to understand the proper amount of draught for patterns is to study the matter in connection with patterns and foundry operations.

Patterns that are deep, and for castings that require to be parallel or square when finished, are made with the least possible amount of draught. If a pattern is a plain form, that affords facilities for lifting or drawing, it may be drawn without taper if its sides are smooth and well finished. Pieces that are shallow and moulded often should, as a matter of convenience, have as much taper as possible; and as the quantity of draught can be as the depth of a pattern, we frequently see them made with a taper that exceeds one inch to the foot of depth.

Moulders generally rap patterns as much as they will stand, often more than they will stand; and in providing for draught it is necessary to take these customs into account. There is no use in making provision to save rapping unless the rapping is to be omitted.

Rapping plates, draw-irons, and other details of pattern-making are soon understood by observation. Perhaps the most useful suggestion which can be given in reference to draw-irons is to say they should be set on the under or bottom side of patterns, instead of on the top, where they are generally placed. A draw-plate set in this way, with a hole bored through the pattern so as to insert draw-irons from the top, cannot pull off, which it is apt to do if set on the top side. Every pattern no matter how small, should be ironed, unless it is some trifling piece, with dowel-pins, draw and rapping plates. If a system of draw-irons is not rigidly carried out, moulders will not trouble themselves to take care of patterns.

In conclusion, I will say on the subject of patterns and castings, that a learner must depend mainly upon what he can see and what is explained to him in the pattern-shop and foundry. He need never fear an uncivil answer to a proper question, applied at the right time and place. Mechanics who have enough knowledge to give useful information of their business, have invariably the courtesy and good sense to impart such information to those who require it.

An apprentice should never ask questions about simple and obvious matters, or about such things as he can easily learn by his own efforts. The more difficult a question is, the more pleasure a skilled man will take in answering it. In short, a learner should carefully consider questions before asking them. A good plan is to write them down, and when information is wanted about casting, never go to a foundry to interrupt a manager or moulder at melting time, nor in the morning, when no one wants to be annoyed with questions.

I will, in connection with this subject of patterns and castings, suggest a plan of learning especially applicable in such cases, that of adopting a habit of imagining the manner of moulding, and the kind of pattern used in producing each casting that comes under notice. Such a habit becomes easy and natural in a short time, and is a sure means of acquiring an extended knowledge of patterns and moulding.

A pattern-maker no sooner sees a casting than he imagines the kind of pattern employed in moulding it; a moulder will imagine the plan of moulding and casting a piece; while an engineer will criticise the arrangement, proportions, adaptation, and general design, and if skilled, as he ought to be, will also detect at a glance any useless expense in patterns or moulding.

(1.) Why cannot the regular working drawings of a machine be employed to construct patterns by?—(2.) What should determine the quality or durability of patterns?—(3.) How can the arrangement of patterns affect certain parts of a casting?—(4.) What means can be employed to avoid inherent strain in castings?—(5.) Why is the top of a casting less sound than the bottom or drag side?—(6.) What are cores employed for?—(7.) What is meant by venting a mould?—(8.) Explain the difference between green and dry sand mouldings.—(9.) Why is sand employed for moulds?—(10.) What generally causes the disarrangement of cores in casting?—(11.) Why are castings often sprung or crooked?—(12.) What should determine the amount of draught given to patterns?—(13.) What are the means generally adopted to avoid cooling strains in castings?

Chapter XXIII

Workshop processes which are capable of being systematised are the most easy to learn. When a process is reduced to a system it is no longer a subject of special knowledge, but comes within general rules and principles, which enable a learner to use his reasoning powers to a greater extent in mastering it.

To this proposition another may be added, that shop processes may be systematised or not, as they consist in duplication, or the performance of certain operations repeatedly in the same manner. It has been shown in the case of patterns that there could be no fixed rules as to their quality or the mode of constructing them, and that how to construct patterns is a matter of special knowledge and skill.

These rules apply to forging, but in a different way from other processes. Unlike pattern-making or casting, the general processes in forging are uniform; and still more unlike pattern-making or casting, there is a measurable uniformity in the articles produced, at least in machine-forging, where bolts, screws, and shafts are continually duplicated.

A peculiarity of forging is that it is a kind of hand process, where the judgment must continually direct the operations, one blow determining the next, and while pieces forged may be duplicates, there is a lack of uniformity in the manner of producing them. Pieces may be shaped at a white welding heat or at a low red heat, by one or two strong blows or by a dozen lighter blows, the whole being governed by the circumstances of the work as it progresses. A smith may not throughout a whole day repeat an operation precisely in the same manner, nor can he, at the beginning of an operation, tell the length of time required to execute it, nor even the precise manner in which he will perform it. Such conditions are peculiar, and apply to forging alone.

I think proper to point out these peculiarities, not so much from any importance they may have in themselves, but to suggest critical investigation, and to dissipate any preconceived opinions of forging being a simple matter, easy to learn, and involving only commonplace operations.

The first impressions an apprentice forms of the smith-shop as a department of an engineering establishment is that it is a black, sooty, dirty place, where a kind of rough unskilled labour is performed—a department which does not demand much attention. How far this estimate is wrong will appear in after years, when experience has demonstrated the intricacies and difficulties of forging, and when he finds the skill in this department is more difficult to obtain, and costs more relatively than in any other. Forging as a branch of work requires, in fact, the highest skill, and is one where the operation continually depends upon the judgment of the workman, which neither power nor machines can to any extent supplant. Dirt, hard labour, and heat deter men from learning to forge, and create a preference for the finishing shop, which in most places makes a disproportion between the number of smiths and finishers.

Forging as a process in machine-making includes the forming and shaping of the malleable parts of machinery, welding or joining pieces together, the preparation of implements for forging and finishing, tempering of steel tools, and usually case-hardening.

Considered as a process, forging may be said to relate to shaping malleable material by blows or compression when it is rendered soft by heating. So far as hand-tools and the ordinary hand operations in forging, there can be nothing said that will be of much use to a learner. In all countries, and for centuries past, hand implements for forging have remained quite the same; and one has only to visit any machine forging-shop to see samples and types of standard tools. There is no use in describing tongs, swages, anvils, punches, and chisels, when there is nothing in their form nor use that may not be seen at a glance; but tools and machines for the application of motive power in forging processes deserve more careful notice.

Forging plant consists of rolling mills, trip-hammers, steam-hammers, drops, and punches, with furnaces, hearths, and blowing apparatus for heating. A general characteristic of all forging machines is that of a great force acting throughout a short distance. Very few machines, except the largest hammers, exceed a half-inch of working range, and in average operations not one-tenth of an inch.

These conditions of short range and great force are best attained by what may be termed percussion, and by machines which act by blows instead of positive and gradual pressure; hence we find that hand and power hammers are the most common tools among those of the smith-shop.

To exert a powerful force acting through but a short distance, percussive devices are much more effective and simple than those acting by maintained or direct pressure. A hammer-head may give a blow equal to many tons by its momentum, and absorb the reactive force which is equal to the blow; but if an equal force was to be exerted by screws, levers, or hydraulic apparatus, we can easily see that an abutment would be required to withstand the reactive force, and that such an abutment would require a strength perhaps beyond what ingenuity could devise.

This principle is somewhat obscure, and the nature of percussive forces not generally considered—a matter which may be illustrated by considering the action of a simple hand-hammer. Few people, in witnessing the use of a hammer, or in using one themselves, ever think of it as an engine giving out tons of force, concentrating and applying power by functions which, if performed by other mechanism, would involve trains of gearing, levers, or screws; and that such mechanism, if employed instead of a hammer, must lack that important function of applying force in any direction as the will and hands may direct. A simple hand-hammer is in the abstract one of the most intricate of mechanical agents—that is, its action is more difficult to analyse than that of many complex machines involving trains of mechanism; yet our familiarity with hammers causes this fact to be overlooked, and the hammer has even been denied a place among those mechanical contrivances to which there has been applied the name of "mechanical powers."

Let the reader compare a hammer with a wheel and axle, inclined plane, screw, or lever, as an agent for concentrating and applying power, noting the principles of its action first, and then considering its universal use, and he will conclude that, if there is a mechanical device that comprehends distinct principles, that device is the common hammer. It seems, indeed, to be one of those provisions to meet a human necessity, and without which mechanical industry could not be carried on. In the manipulation of nearly every kind of material, the hammer is continually necessary in order to exert a force beyond what the hands may do, unaided by mechanism to multiply their force. A carpenter in driving a spike requires a force of from one to two tons; a blacksmith requires a force of from five pounds to five tons to meet the requirements of his work; a stonemason applies a force of from one hundred to one thousand pounds in driving the edge of his tools; chipping, calking, in fact nearly all mechanical operations, consist more or less in blows, such blows being the application of accumulated force expended throughout a limited distance.

Considered as a mechanical agent, a hammer concentrates the power of the arms, and applies it in a manner that meets the requirements of various purposes. If great force is required, a long swing and slow blows accomplish tons; if but little force is required, a short swing and rapid blows will serve—the degree of force being not only continually at control, but also the direction in which it is applied. Other mechanism, if employed instead of hammers to perform a similar purpose, would require to be complicated machines, and act in but one direction or in one plane.

These remarks upon hammers are not introduced here as a matter of curiosity, nor with any intention of following mechanical principles beyond where they will explain actual manipulation, but as a means of directing attention to percussive acting machines generally, with which forging processes, as before explained, have an intimate connection.

Machines and tools operating by percussive action, although they comprise a numerous class, and are applied in nearly all mechanical operations, have never received that amount of attention in text-books which the importance of the machines and their extensive use calls for. Such machines have not even been set off as a class and treated of separately, although the distinction is quite clear between machines with percussive action, and those with what may be termed direct action, both in the manner of operating and in the general plans of construction. There is, of course, no lack of formul? for determining the measure of force, and computing the dynamic effect of percussive machines acting against a measured or assumed resistance, and so on; but this is not what is meant. There are certain conditions in the operation of machines, such as the strains which fall upon supporting frames, the effect produced upon malleable material when struck or pressed, and more especially of conditions which may render percussive or positive acting machines applicable to certain purposes; but little explanation has been given which is of value to practical men.

Machines and tools that operate by blows, such as hammers and drops, produce effect by the impact of a moving mass by force accumulated throughout a long range, and expending the sum of this accumulated force on an object. The reactive force not being communicated to nor resisted by the machine frames, is absorbed by the inertia of the mass which gave the blow; the machinery required in such operations being only a weight, with means to guide or direct it, and mechanism for connection with motive power. A hand-hammer, for example, accumulates and applies the force of the arm, and performs all the functions of a train of mechanism, yet consists only of a block of metal and a handle to guide it.

Machines with direct action, such as punches, shears, or rolls, require first a train of mechanism of some kind to reduce the motion from the driving power so as to attain force; and secondly, this force must be balanced or resisted by strong framing, shafts, and bearings. A punching-machine, for example, must have framing strong enough to resist a thrust equal to the force applied to the work; hence the frames of such machines are always a huge mass, disposed in the most advantageous way to meet and resist this reactive force, while the main details of a drop-machine capable of exerting an equal force consist only of a block and a pair of guides to direct its course.

Leaving out problems of mechanism in forging machines, the adaptation of pressing or percussive processes is governed mainly by the size and consequent inertia of the pieces acted upon. In order to produce a proper effect, that is, to start the particles of a piece throughout its whole depth at each blow, a certain proportion between a hammer and the piece acted upon must be maintained. For heavy forging, this principle has led to the construction of enormous hammers for the performance of such work as no pressing machinery can be made strong enough to execute, although the action of such machinery in other respects would best suit the conditions of the work. The greater share of forging processes may be performed by either blows or compression, and no doubt the latter process is the best in most cases. Yet, as before explained, machinery to act by pressure is much more complicated and expensive than hammers and drops. The tendency in practice is, however, to a more extensive employment of press-forging processes.

(1.) What peculiarity belongs to the operation of forging to distinguish it from most others?—(2.) Describe in a general way what forging operations consist in.—(3.) Name some machines having percussive action.—(4.) What may this principle of operating have to do with the framing of a machine?—(5.) If a steam-hammer were employed as a punching-machine, what changes would be required in its framing?—(6.) Explain the functions performed by a hand-hammer.

Chapter XXIV

Trip-hammers employed in forging bear a close analogy to, and were no doubt first suggested by, hand-hammers. Being the oldest of power-forging machines, and extensively employed, it will be proper to notice trip-hammers before steam-hammers.

As remarked in the case of other machines treated of, there is no use of describing the mechanism of trip-hammers; it is presumed that every engineer apprentice has seen trip-hammers, or can do so; and the plan here is to deal especially with what he cannot see, and would not be likely to learn by casual observation.

One of the peculiarities of trip-hammers as machines is the mechanical difficulties in connecting them with the driving power, especially in cases where there are a number of hammers to be driven from one shaft.

The sudden and varied resistance to line shafts tends to loosen couplings, destroy gearing, and produce sudden strains that are unknown in other cases; and shafting arranged with the usual proportions for transmitting power will soon fail if applied to driving trip-hammers. Rigid connections or metal attachments ace impracticable, and a slipping belt arranged so as to have the tension varied at will is the usual and almost the only successful means of transmitting power to hammers. The motion of trip-hammers is a curious problem; a head and die weighing, together with the irons for attaching them, one hundred pounds, will, with a helve eight feet long, strike from two to three hundred blows a minute. This speed exceeds anything that could be attained by a direct reciprocal motion given to the hammer-head by a crank, and far exceeds any rate of speed that would be assumed from theoretical inference. The hammer-helve being of wood, is elastic, and acts like a vibrating spring, its vibrations keeping in unison with the speed of the tripping points. The whole machine, in fact, must be constructed upon a principle of elasticity throughout, and in this regard stands as an exception to almost every other known machine. The framing for supporting the trunnions, which one without experience would suppose should be very rigid and solid, is found to answer best when composed of timber, and still better when this timber is laid up in a manner that allows the structure to spring and yield. Starting at the dies, and following back through the details of a trip-hammer to the driving power, the apprentice may note how many parts contribute to this principle of elasticity: First—the wooden helve, both in front of and behind the trunnion; next—the trunnion bar, which is usually a flat section mounted on pivot points; third—the elasticity of the framing called the 'husk,' and finally the frictional belt. This will convey an idea of the elasticity required in connecting the hammer-head with the driving power, a matter to be borne in mind, as it will be again referred to.

Another peculiar feature in trip-hammers is the rapidity with which crystallisation takes place in the attachments for holding the die blocks to the helves, where no elastic medium can be interposed to break the concussion of the dies. Bolts to pass through the helve, although made from the most fibrous Swedish iron, will on some kinds of work not last for more than ten days' use, and often break in a single day. The safest mode of attaching die blocks, and the one most common, is to forge them solid, with an eye or a band to surround the end of the helve.

At the risk of laying down a proposition not warranted by science, I will mention, in connection with this matter of crystallisation, that metal when disposed in the form of a ring, for some strange reason seems to evade the influences which produce crystalline change. A hand-hammer, for example, may be worn away and remain fibrous; the links of chains and the tires of waggon wheels do not become crystallised; even the tires on locomotive wheels seem to withstand this influence, although the conditions of their use are such as to promote crystallisation.

Among exceptions to the ordinary plans of constructing trip-hammers, may be mentioned those employed in the American Armoury at Springfield, U.S., where small hammers with rigid frames and helves, the latter thirty inches long, forged from Lowmoor iron, are run at a speed of 'six hundred blows a minute.' As an example, however, they prove the necessity for elasticity, because the helves and other parts have to be often renewed, although the duty performed is very light, such as making small screws.

(1.) What limits the speed at which the reciprocating parts of machines may act?—(2.) What is the nature of reciprocal motion produced by cranks?—(3.) Can reciprocating movement be uniform in such machines as power-hammers, saws, or pumps?—(4.) What effect as to the rate of movement is produced by the elastic connections of a trip-hammer?

Chapter XXV

Power-hammers operated by crank motion, adapted to the lighter kinds of work, are now commonly met with in the forging-shops of engineering establishments. They are usually of very simple construction, and I will mention only two points in regard to such hammers, which might be overlooked by an apprentice in examining them.

The faces of the dies remain parallel, no matter how large the piece may be that is operated upon, while with a trip-hammer, the top die moves in an arc described from the trunnions of the helve, and the faces of the dies can only be parallel when in one position, or when operating on pieces of a certain depth. This feature of parallel movement with the dies of crank-hammers is of great importance on some kinds of work, and especially so for machine-forgings where the size or depth of the work is continually being varied.

A second point to be noticed in hammers of this class is the nature of the connection with the driving power. In all cases there will be found an equivalent for the elastic helve of the trip-hammer—either air cylinders, deflecting springs, or other yielding attachments,—interposed between the crank and the hammer-head, also a slipping frictional belt or frictional clutches for driving, as in the case of trip-hammers.

Chapter XXVI

The direct application of steam to forging-hammers is without doubt the greatest improvement that has ever been made in forging machinery; not only has it simplified operations that were carried on before this invention, but has added many branches, and extended the art of forging to purposes which could never have been attained except for the steam-hammer.

The general principles of hammer-action, so far as already explained, apply as well to hammers operated by direct steam; and a learner, in forming a conception of steam-hammers, must not fall into the common error of regarding them as machines distinct from other hammers, or as operating upon new principles. A steam-hammer is nothing more than the common hammer driven by a new medium, a hammer receiving power through the agency of steam instead of belts, shafts, and cranks. The steam-hammer in its most improved form is so perfectly adapted to fill the different conditions required in power-hammering, that there seems nothing left to be desired.

Keeping in view what has been said about an elastic connection for transmitting motion and power to hammers, and cushioning the vibratory or reciprocating parts, it will be seen that steam as a driving medium for hammers fills the following conditions:—

First.—The power is connected to the hammer by means of the least possible mechanism, consisting only of a cylinder, a piston, and slide valve, induction pipe and throttle valve; these few details taking the place of a steam-engine, shafts, belts, cranks, springs, pulleys, gearing, in short, all such details as are required between the hammer-head and the steam-boiler in the case of trip-hammers or crank-hammers.

Second.—The steam establishes the greatest possible elasticity in the connection between a hammer and the driving power, and at the same time serves to cushion the blows at both the top and bottom of the stroke, or on the top only, as occasion may require.

Third.—Each blow given is an independent operation, and can be repeated at will, while in other hammers such changes can only be made throughout a series of blows by gradually increasing or diminishing their force.

Fourth.—There is no direct connection between the moving parts of the hammer and the framing, except lateral guides for the hammer-head; the steam being interposed as a cushion in the line of motion, this reduces the required strength and weight of the framing to a minimum, and avoids positive strains and concussion.

Fifth.—The range and power of the blows, as well as the time in which they are delivered, is controlled at will; this constitutes the greatest distinction between steam and other hammers, and the particular advantage which has led to their extended use.

Sixth.—Power can be transmitted to steam-hammers through a small pipe, which may be carried in any direction, and for almost any distance, at a moderate expense, so that hammers may be placed in such positions as will best accommodate the work, and without reference to shafts or other machinery.

Seventh.—There is no waste of power by slipping belts or other frictional contrivances to graduate motion; and finally, there is no machinery to be kept in motion when the hammer is not at work.

Keeping these various points in mind, an apprentice will derive both pleasure and advantage from tracing their application in steam-hammers, which may come under notice, and various modifications of the mechanism will only render investigation more interesting.

One thing more must be noticed, a matter of some intricacy, but without which, all that has been explained would fail to give a proper idea of steam-hammer-action. The valve motions are alluded to.

Steam-hammers are divided into two classes—one having the valves moved by hand, and the other class with automatic valve movement.

The action of steam-hammers may also be divided into what is termed elastic blows, and dead blows.

In operating by elastic blows, the steam piston is cushioned at both the up and down stroke, and the action of a steam-hammer corresponds to that of a helve trip-hammer, the steam filling the office of a vibrating spring; in this case a hammer gives a quick rebounding blow, the momentum being only in part spent upon the work, and partly arrested by cushioning on the steam in the bottom of the cylinder under the piston.

Aside from the greater rapidity with which a hammer may operate when working on this principle, there is nothing gained, and much lost; and as this kind of action is imperative in any hammer that has a 'maintained or positive connection' between its reciprocating parts and the valve, it is perhaps fair to infer that one reason why most automatic hammers act with elastic blows is either because of a want of knowledge as to a proper valve arrangement, or the mechanical difficulties in arranging valve gear to produce dead blows.

In working with dead blows, no steam is admitted under the piston until the hammer has finished its down stroke, and expended its momentum upon the work. So different is the effect produced by these two plans of operating, that on most kinds of work a hammer of fifty pounds, working with dead blows, will perform the same duty that one of a hundred pounds will, when acting by elastic or cushioned blows.

This difference between dead and elastic strokes is so important that it has served to keep hand-moved valves in use in many cases where much could be gained by employing automatic acting hammers.

Some makers of steam-hammers have so perfected the automatic class, that they may be instantly changed so as to work with either dead blows or elastic blows at pleasure, thereby combining all the advantages of both principles. This brings the steam-hammer where it is hard to imagine a want of farther improvement.

The valve gearing of automatic steam-hammers to fill the two conditions of allowing a dead or an elastic blow, furnishes one of the most interesting examples of mechanical combination.

It was stated that to give a dead or stamp stroke, the valve must move and admit steam beneath the piston after the hammer has made a blow and stopped on the work, and that such a movement of the valve could not be imparted by any maintained connection between the hammer-head and valve. This problem is met by connecting the drop or hammer-head with some mechanism which will, by reason of its momentum, continue to 'move after the hammer-head stops.' This mechanism may consist of various devices. Messrs Massey in England, and Messrs Ferris & Miles in America, employ a swinging wiper bar , which is by reason of its weight or inertia retarded, and does not follow the hammer-head closely on the down stroke, but swings into contact and opens the valve after the hammer has come to a full stop.

By holding this wiper bar continuously in contact with the hammer-drop, elastic or rebounding blows are given, and by adding weight in certain positions to the wiper bar its motion is so retarded that a hammer will act as a stamp or drop. A German firm employs the concussion of the blow to disengage valve gear, so that it may fall and effect this after movement of the valves. Other engineers effect the same end by employing the momentum of the valve itself, having it connected to the drop by a slotted or yielding connection, which allows an independent movement of the valve after the hammer stops.

(1.) In comparing steam-hammers with trip or crank hammers what mechanism does steam supplant or represent?—(2.) What can be called the chief distinction between steam and other hammers?—(3.) Under what circumstances is an automatic valve motion desirable?—(4.) Why is a dead or uncushioned blow most effective?—(5.) Will a hammer operate with air the same as with steam?

Chapter XXVII

Another principle to be noticed in connection with hammers and forging processes is that of the inertia of the piece operated upon—a matter of no little importance in the heavier kinds of work.

When a piece is placed on an anvil, and struck on the top side with a certain force, the bottom or anvil side of the piece does not receive an equal force. A share of the blow is absorbed by the inertia of the piece struck, and the effect on the bottom side is, theoretically, as the force of the blow, less the cushioning effect and the inertia of the pieces acted upon.

In practice this difference of effect on the top and bottom, or between the anvil and hammer sides of a piece, is much greater than would be supposed. The yielding of the soft metal on the top cushions the blow and protects the under side from the force. The effect produced by a blow struck upon hot iron cannot be estimated by the force of the blow; it requires, to use a technical term, a certain amount of force to "start" the iron, and anything less than this force has but little effect in moving the particles and changing the form of a piece.

From this it may be seen that there must occur a great loss of power in operating on large pieces, for whatever force is absorbed by inertia has no effect on the underside. By watching a smith using a hand hammer it will be seen that whenever a piece operated upon is heavier than the hammer employed, but little if any effect is produced on the anvil or bottom surface, nor is this loss of effect the only one. The expense of heating, which generally exceeds that of shaping forgings, is directly as the amount of shaping that may be done at each heat; and consequently, if the two sides of a piece, instead of one, can be equally acted upon, one-half the heating will be saved.

Another object gained by equal action on both sides of large pieces is the quality of the forgings produced, which is generally improved by the rapidity of the shaping processes, and injured by too frequent heating.

The loss of effect by the inertia of the pieces acted upon increases with the weight of the work; not only the loss of power, but also the expense of heating increases with the size of the pieces. There is, however, such a difference in the mechanical conditions between light and heavy forging that for any but a heavy class of work there would be more lost than gained in attempting to operate on both sides of pieces at the same time.

To attain a double effect, and avoid the loss pointed out, Mr Ramsbottom designed what may be called compound hammers, consisting of two independent heads or rams moving in opposite directions, and acting simultaneously upon pieces held between them.

It would be inferred that the arrangement of these double acting hammers must necessarily be complicated and expensive, but the contrary is the fact. The rams are simply two masses of iron mounted on wheels that run on ways, like a truck, and the impact of the hammers, so far as not absorbed in the work, is neutralised by each other. No shock or jar is communicated to framing or foundations as in the case of single acting hammers that have fixed anvils. The same rule applies in the back stroke of the hammers as the links which move them are connected together at the centre, where the power is applied at right angles to the line of the hammer movement. The links connecting the two hammers constitute, in effect, a toggle joint, the steam piston being attached where they meet in the centre.

The steam cylinder which moves the hammers is set in the earth at some depth below the plane upon which they move, and even when the heaviest work is done there is no perceptible jar when one is standing near the hammers, as there always is with those which have a vertical movement and are single acting.

(1.) Why is the effect produced different on the top and bottom of a piece when struck by a hammer?—(2.) Why does not a compound hammer create jar and concussion?—(3.) What would be a mechanical difficulty in presenting the material to such hammers?—(4.) Which is most important, speed or weight, in the effect produced on the under side of pieces, when struck by single acting hammers?

Chapter XXVIII

Tempering may be called a mystery of the smith-shop; this operation has that attraction which characterises every process that is mysterious, especially such as are connected with, or belong to mechanical manipulation. A strange and perhaps fortunate habit of the mind is to be greatly interested in what is not well understood, and to disregard what is capable of plain demonstration.

An old smith who has stood at the forge for a score of years will take the same interest in tempering processes that a novice will. When a piece is to be tempered which is liable to spring or break, and the risk is great, he will enter upon it with the same zeal and interest that he would have done when learning his trade.

No one has been able to explain clearly why a sudden change of temperature hardens steel, nor why it assumes various shades of colour at different degrees of hardness; we only know the fact, and that steel fortunately has such properties.

Every one who uses tools should understand how to temper them, whether they be for iron or wood. Experiments with tempered tools is the only means of determining the proper degree of hardness, and as smiths, except with their own tools, have to rely upon the explanations of others as to proper hardening, it follows that tempering is generally a source of complaint.

Tempering, as a term, is used to comprehend both hardening and drawing; as a process it depends mainly upon judgment instead of skill, and has no such connection with forging as to be performed by smiths only. Tempering requires a different fire from those employed in forging, and also more care and precision than blacksmiths can exercise, unless there are furnaces and baths especially arranged for tempering tools.

A difficulty which arises in hardening tools is because of the contraction of the steel which takes place in proportion to the change of temperature; and as the time of cooling is in proportion to the thickness or size of a piece, it follows, of course, that there is a great strain and a tendency to break the thinner parts before the thicker parts have time to cool; this strain may take place either from cooling one side first, or more rapidly than another.

The following propositions in regard to tempering, comprehend the main points to be observed:

The permanent contraction of steel in tempering is as the degree of hardness imparted to it by the bath.

The time in which the contraction takes place is as the temperature of the bath and the cross section of the piece; in other words the heat passes off gradually from the surface to the centre.

Thin sections of steel tools being projections from the mass which supports the edges, are cooled first, and if provision is not made to allow for contraction they are torn asunder.

The main point in hardening and the most that can be done to avoid irregular contraction, is to apply the bath so that it will act first and strongest on the thickest parts. If a piece is tapering or in the form of a wedge, the thick end should enter the bath first; a cold chisel for instance that is wide enough to endanger cracking should be put into the bath with the head downward.

The upflow of currents of warmed water are a common cause of irregular cooling and springing of steel tools in hardening; the water that is heated, rises vertically, and the least inclination of a piece from a perpendicular position, allows a warm current to flow up one side.

The most effectual means of securing a uniform effect from a tempering bath is by violent agitation, either of the bath or the piece; this also adds to the rapidity of cooling.

The effect of tempering baths is as their conducting power; chemicals except as they may contribute to the conducting properties of a bath, may safely be disregarded. For baths, cold or ice water loaded with salt for extreme hardness, and warm oil for tools that are thin and do not require to be very hard, are the two extremes outside of which nothing is required in ordinary practice.

In the case of tools composed partly of iron and partly of steel, steel laid as it is called, the tendency to crack in hardening may be avoided in most cases by hammering the steel edge at a low temperature until it is so expanded that when cooled in hardening it will only contract to a state of rest and correspond to the iron part; the same result may be produced by curving a piece, giving convexity to the steel side before hardening.

Tools should never be tempered by immersing their edges or cutting parts in the bath, and then allowing the heat to "run down" to attain a proper temper at the edge. I am well aware that this is attacking a general custom, but it is none the less wrong for that reason. Tools so hardened have a gradually diminishing temper from their point or edge, so that no part is properly tempered, and they require continual re-hardening, which spoils the steel; besides, the extreme edge, the only part which is tempered to a proper shade, is usually spoiled by heating and must be ground away to begin with. No latheman who has once had a set of tools tempered throughout by slow drawing, either in an oven, or on a hot plate, will ever consent to point hardening afterwards. A plate of iron, two to two and one-half inches thick, placed over the top of a tool dressing fire, makes a convenient arrangement for tempering tools, besides adding greatly to the convenience of slow heating, which is almost as important as slow drawing. The writer has by actual experiment determined that the amount of tool dressing and tempering, to say nothing of time wasted in grinding tools, may in ordinary machine fitting be reduced one-third by "oven tempering."

As to the shades that appear in drawing temper, or tempering it is sometimes called, it is quite useless to repeat any of the old rules about "straw colour, violet, orange, blue," and so on; the learner knows as much after such instruction as before. The shades of temper must be seen to be learned, and as no one is likely to have use for such knowledge before having opportunities to see tempering performed, the following plan is suggested for learning the different shades. Procure eight pieces of cast steel about two inches long by one inch wide and three-eighths of an inch thick, heat them to a high red heat and drop them into a salt bath; preserve one without tempering to show the white shade of extreme hardness, and polish one side of each of the remaining seven pieces; then give them to an experienced workman to be drawn to seven varying shades of temper ranging from the white piece to the dark blue colour of soft steel. On the backs of these pieces labels can be pasted describing the technical names of the shades and the general uses to which tools of corresponding hardness are adapted.

This will form an interesting collection of specimens and accustom the eye to the various tints, which after some experience will be instantly recognised when seen separately.

It may be remarked as a general rule that the hardness of cutting tools is "inverse as the hardness of the material to be cut," which seems anomalous, and no doubt is so, if nothing but the cutting properties of edges is considered; but all cutting edges are subjected to transverse strain, and the amount of this strain is generally as the hardness of the material acted upon; hence the degree of temper has of necessity to be such as to guard against breaking the edges. Tools for cutting wood, for example, can be much harder than for cutting iron, or to state it better, tools for cutting wood are harder than those usually employed for cutting iron; for if iron tools were always as carefully formed and as carefully used as those employed in cutting wood, they could be equally hard.

Forges, pneumatic machinery for blast, machinery for handling large pieces, and other details connected with forging, are easily understood from examples.

(1.) What causes tools to bend or break in hardening?—(2.) What means can be employed to prevent injury to tools in hardening?—(3.) Can the shades of temper be produced on a piece of steel without hardening?—(4.) What forms a limit of hardness for cutting tools?—(5.) What are the objects of steel-laying tools instead of making them of solid steel?

Chapter XXIX

The fitting or finishing department of engineering establishments is generally regarded as the main one.

Fitting processes, being the final ones in constructing machinery, are more nearly in connection with its use and application; they consist in the organisation or bringing together the results of other processes carried on in the draughting room, pattern shop, foundry, and smith shop.

To the unskilled, or to those who do not take a comprehensive view of an engineering business as a whole, the finishing and fitting department seems to constitute the whole of machine manufacture—an impression which a learner should guard against, because nothing but a true understanding of the importance and relations of the different divisions of an establishment can enable them to be thoroughly or easily learned.

Finishing, therefore, it must be borne in mind, is but one among several processes, and that the fitting department is but one out of four or more among which attention is to be divided.

Finishing as a process is a secondary and not always an essential one; many parts of machinery are ready for use when forged or cast and do not require fitting; yet a finishing shop must in many respects be considered the leading department of an engineering establishment. Plans, drawings and estimates are always based on finished work, and when the parts have accurate dimensions; hence designs, drawings and estimates may be said to pass through the fitting shop and follow back to the foundry and smith shop, so that finishing, although the last process in the order of the work, is the first one after the drawings in every other sense; even the dimensions in pattern-making which seems farthest removed from finishing, are based upon fitting dimensions, and to a great extent must be modified by the conditions of finishing.

In casting and forging operations the material is treated while in a heated and expanded condition; the nature of these operations is such that accurate dimensions cannot be attained, so that both forgings and castings require to be made enough larger than their finished dimensions to allow for shrinkage and irregularities. Finishing as a process consists in cutting away this surplus material, and giving accurate dimensions to the parts of machinery when the material is at its natural temperature. Finishing operations being performed as said upon material at its normal temperature permits handling, gauging and fitting together of the parts of machinery, and as nearly all other processes involve heating, finishing may be called the cold processes of metal work. The operations of a fitting shop consist almost entirely of cutting, and grinding or abrading; a proposition that may seem novel, yet these operations comprehend nearly all that is performed in what is called fitting.

Cutting processes may be divided into two classes: cylindrical cutting, as in turning, boring, and drilling, to produce circular forms; and plane cutting, as in planing, shaping, slotting and shearing, to produce plane or rectangular forms. Abrading or grinding processes may be applied to forms of any kind.

To classify further—cutting machines may be divided into those wherein the tools move and the material is fixed, and those wherein the material is moved and the tools fixed, and machines which involve a compound movement of both the tools and the material acted upon.

There is also a distinction between machine and hand cutting that may be noted. In machine cutting it is performed in true geometrical lines, the tools or material being moved by positive guides as in planing and turning; in hand operations, such as filing, scraping or chipping, the tools are moved without positive guidance, and act in irregular lines.

To attempt a generalisation of the operations of the fitting shop in this manner may not seem a very practical means of understanding them, yet the application will be better understood as we go farther on.

Cutting tools include nearly all that are employed in finishing; lathes, planing machines, drilling and boring machines, shaping, slotting and milling machines, come within this class. The machines named make up what are called standard tools, such as are essential and are employed in all establishments where general machine manufacture is carried on. Such machines are constructed upon principles substantially the same in all countries, and have settled into a tolerably uniform arrangement of movements and parts.

Besides the machine tools named, there are special machines to be found in most works, machines directed to the performance of certain work; by a particular adaptation such machines are rendered more effective, but they are by such adaptation unfitted for general purposes.

General engineering work cannot consist in the production of duplicate pieces, nor in operations performed constantly in the same manner as in ordinary manufacturing; hence there has been much effort expended in adapting machines to general purposes—machines, which seldom avoid the objections of combination, pointed out in a previous chapter.

The principal improvements and changes in machine fitting at the present time is in the application of special tools. A lathe, a planing machine, or drilling machine as a standard machine, must be adapted to a certain range of work, but it is evident that if such tools were specially arranged for either the largest or the smallest pieces that come within their capacity, more work could be performed in a given time and consequently at less expense. It is also evident that machine tools must be kept constantly at work in order to be profitable, and when there are not sufficient pieces of one kind to occupy a machine, it must be employed on various kinds of work; but whenever there are sufficient pieces of the same size upon which certain processes of a uniform character are to be performed, there is a gain by having machines constructed to conform as nearly as possible to the requirements of special work, and without reference to any other.

It is now proposed to review the standard tools of a fitting shop, noticing the general principles of their construction and especially of their operation; not by drawings nor descriptions to show what a lathe or a planing machine is, nor how some particular engineer has constructed such tools, but upon the plan explained in the introduction, presuming the reader to be familiar with the names and purposes of standard machine tools. If he has not learned this much, and does not understand the names and general objects of the several operations carried on in a fitting shop, he should proceed to acquaint himself thus far before troubling himself with books of any kind.

(1.) Why cannot the parts of machinery be made to accurate dimensions by forging or casting?—(2.) What is the difference between hand tool and machine tool operation as to truth?—(3.) Why cannot hand-work be employed in duplicating the parts of machinery?—(4.) What is the difference between standard and special machine tools?

1 2 3✔ 4 5